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Abstract: We show that particular spatial distributions of nanoscopic plasmonic building
blocks in metamaterials may enable extraordinary nonlinear-optical frequency-shifted reflec-
tivity and pulse shaping.
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Metamaterials (MM) are artificially designed and engineered materials, which can have properties unattainable
in nature. Usually, MM rely on advances in nanotechnology to build tiny metallic nanostructures smaller than the
wavelength of light. These nanostructures modify the electromagnetic (EM) properties of MM, sometimes creat-
ing seemingly impossible optical effects. Negative-index MM (NIMs) are most intriguing EM materials that support
backward EM waves (BEMW). Phase velocity and energy flux (group velocity) become contra-directed in NIMs. The
appearance of BEMW is commonly associated with simultaneously negative electric permittivity (ε < 0) and mag-
netic permeability (µ < 0) at corresponding frequencies and, consequently, with negative refractive index n =−√µε .
Counter-intuitive backwardness of EMW is in strict contrast with the electrodynamics of ordinary, positive-index ma-
terials. The possibility of huge enhancement of optical parametric amplification has been predicted through three-wave
mixing in NIMs if one of the coupled electromagnetic waves falls in the negative-index frequency domain [1,2]. Unpar-
alleled properties of second harmonic generation in NIMs were predicted in [2,3]. It was shown that frequency-mixing
of ordinary and BEMV enables frequency shifted amplified reflection of electromagnetic waves [4].

Current mainstream in fabricating bulk NIM slabs relies on engineering of LC nanocircuits - plasmonic mesoatoms
with negative electromagnetic response. Extraordinary coherent nonlinear optical frequency-converting propagation
processes predicted in NIMs have been realized (simulated) so far only in the microwave transmission lines [5]. This
paper proposes a different paradigm which employs spatial dispersion [6] to realize outlined processes. We show
that metamaterial slabs which may support coexistence of ordinary electromagnetic waves with co-directed phase
velocity and energy flux (∂ω/∂k > 0) and extraordinary optical modes with contra-directed phase and group velocities
(∂ω/∂k < 0) enable extraordinary nonlinear optical processes similar to that predicted in NIMs. Particularly, the focus
is on the extraordinary properties of nonlinear optical frequency-mixing of contra-propagating ordinary short optical
pulses and pulses with negative group velocity which have been studied through numerical simulations.

One of the possible realization of the outlined approach is a plasmonic metaslab made of carbon nanotubes. It can
be viewed as a plasmonic wave guide formed by a metal plate (bottom) and by air (top) tampered by standing carbon
nanotubes [7]. Such a structure supports different EM eigenmodes in the THz and mid IR. Some of them exhibit spatial
dispersion which changes from positive to negative in different wavelength intervals whereas others predominantly
maintain negative dispersion. Frequencies and gaps between the modes can be tailored by changing lengths and spacing
between the nanotubes so that phase velocities for the modes matching the photon energy conservation law would
become equal as their group velocities remain contra-directed. Basically, different materials and geometries can be
utilized to control spatial dispersion and losses in such MM with variable spatial dispersion [8].

Unparalleled properties of nonlinear-optical coupling (collision) of short contra-propagating pulses in such MMs
are illustrated in Fig. 1 (a) – (d) for the example of BW second harmonic (SH) generation in the loss-free MM. Here
τ is the time interval measured in units of the input pulse duration [Figs. 1 (a), (b)]. Position of the fundamental and
SH pulses inside the metaslab is measured in units of the input pulse length l [Figs. 1 (c), (d)]. Second harmonic
is generated only inside the fundamental pulse. It travels in the opposite direction and exits from the fundamental
pulse. This results in different durations of the fundamental and SH pulses exiting from the opposite sides of the
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Fig. 1. Phase-matched backward-wave SH generation in the loss-free MM. (a) and (c): Input rect-
angular T1(z = 0) and output T1(z = L) pulse shapes for the fundamental radiation; η2(z = 0) are
pulse shapes for the emitted back second harmonic. (b) and (d): Change of the pulse energy at the
corresponding frequencies across the slab. Here, d = L/l, 2S2/S10 is photon conversion efficiency.
α1,2 and g are absorption and nonlinear coupling parameters.

metaslab. The metaslab operates as controlled frequency doubling microscopic nonlinear-optical metamirror. Shapes
of the output transmitted and generated SH pulses depend on the energy conversion rate inside the fundamental pulse
and, hence, can be controlled by changing intensity and ratio of the the input pulse length to the metamaterial thickness
(parameter d). It is demonstrated in Figs. 1 (a), (b). Figures 1 (c), (d) display overall pulse energy (photon) conversion
efficiency across the metaslab. Unusual behavior is due to the opposite propagation direction of the pulses.

In the conclusion, we show that a deliberately engineered highly dispersive metamaterial slab enables switching of
optical pulses to contra-propagated frequency shifted pulses with tailored pulse shape. Enhanced efficiency of switch-
ing is ensured by the extraordinary phase matching of contra-propagating light pulses. Extraordinary properties of
coherent nonlinear-optical switching in short-pulse regime in such metamaterials are demonstrated through numerical
simulations. It is shown that greatly enhanced nonlinear optical coupling and frequency conversion become possible
due to extraordinary opposite directions of phase and group velocities for one of the pulses, whereas other coupled
pulses remain ordinary. Then the metaslab operates as a frequency-converting nonlinear-optical microscopic metamir-
ror and switch. Other prospective applications in the photonic device technologies will be discussed.
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